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Abstract—The question of calculating the temperatures of opaque and non-opaque surfaces subject to

assigned net rates of radiant flux is considered. It is shown that, for gray surfaces, any opaque surface in

radiant balance in an enclosure of arbitrary complexity achieves a steady state temperature which is

independent of the emissivity (or absorptivity) of the surface, Relations are developed for the tempera-
ture of opaque and non-opaque surfaces subjected to an assigned net radiant flux.

Résumé—On considére le calcul des températures de surfaces, opagques ou non, soumises a des densités

de flux de rayonnement bien déterminées. On montre que, dans le cas de corps gris, une surface opaque

quelconque, en équilibre de rayonnement dans une enceinte de complexité arbitraire, acquiert, en

régime permanent, une température qui est indépendante de ses coefficients d’absorption ou d’émission,

Des relations sont données pour la température de surfaces, opaques ou non, soumises 3 des flux de
rayonnement bien déterminés.

Zusammenfassung—Die Berechnung von Temperaturen strahlungsundurchidssiger und durchldssiger

Oberflichen bei gegebener Strahlungsmenge wird untersucht. Jede undurchliissige Oberfliiche eines

grauen Strahlers in einer willkiirlich aufgebauten Umhiillung nimmt im Strahlungsgleichgewicht eine

gleichmissige Endtemperatur an, unabhiingig vom Emissionsvermdégen {oder Absorptionsvermdgen)

der Oberfliche. Die Abhingigkeit der Temperatur undurchlissiger und durchlissiger Oberflichen von
der zugefiihrten Strahlungsmenge ist angegeben.

Annoranma—PaccMarpusaeTca npofieMa  BHMYHCIEHUS TeMIEPATYP HENPO3PAYHHX U
OPO3PAYHEIX TICBEPXHOCTEH, 4Yepe3 KOTOPHIEe NPOXOAMT ONpeNeNEHHHl pesylsTHRYIOMHUR
norox wuaaydenud. Ilowkaszamo, 4wre NnA CepsIX mOBepXHOCTeH Inobas HempospadHafn
TIOBEPXHOCTD B YCIOBMAX PABHOBECHHA NPH OKpYHaoilell crcTeMe NpOH3BOILHOR CHOMHOCTH
JOCTHTAET CTALHMOHAPHON TEeMIeDPATypH, KOTOPAd He BABHCHT OT HaAyyaTedbHOH (mmnd
HOTJIOWATeNbHOH) CIOCOBHOCTH HOBEPXHOCTH. BLIBEIEHH COOTHOWEGHMA INH HAXOMACHUA
TeMHOePaTypel HONPO3PAYHBIX M HPO3PAYHBIX NIOBEPXHOCTeHd NPHM NPOXOMICHNM OHpenentH-
HOTO Pe3yIbTUDYIOIEro MOTOKA H3JLy Yen i,

NOTATION e, total hemispherical emissivity (emittance)
absorptivity (absorptance) of a sur- of a surface;
face; p, reflectivity (reflectance) of a surface;
radiating area of a surface; o, universal constant for thermal radiation.

absorption factor;

angle factor, the fraction of the emission INTRODUCTION

of surface p directly incident upon sur-
face i;

net rate of radiant energy loss from sur-
face j;

absolute temperature;

= Fipi;

IN ENGINEERING practice there are many circum-
stances in which thermal radiant energy exchange
rates may be calculated with sufficient accuracy
under the assumptions of gray, diffuse radiation

in  vacuo.

The absorption factor method

developed and elaborated upon by the present
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writer [1-3] is well adapted to such calculations
and applies to enclosures of arbitrary com-
plexity. Although this method requires the
solution of a number of simultaneous linear equa-
tions (as must any method which accounts for
multiple inter-reflections) the method is concept-
vally simple and is well suited to machine tech-
niques of equation solution or matrix inversion.

The absorption factor method also permits,
due to its simplicity, the demonstration of many
of the important characteristics of radiant
exchange processes. In the original paper, for
example, absorption factor reciprocity was
shown to be a simple consequence of the assump-
tions of gray, diffuse radiation and of uniform
irradiation without reference to the second law
of thermodynamics.

The present paper is concerned with the
application of this method to calculations con-~
cerning opaque and non-opaque surfaces in
radiant surroundings of arbitrary complexity
which are subject to assigned rates of net
radiant flux. Such a surface condition appears
in many cases of modern technology; for
example, in electrically heated walls and win-
dows, in reactor elements in the absence of a
coolant, in electrical circuit elements in a
vacuum, and for surfaces subject to solar or
other irradiation.

An interesting particular case, the opaque
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properties. This characteristic is sometimes
alluded to, e.g. Eckert [4] in the language of
Oppenheim’s method [5] of analysis, but has
not been proven.

The assumed condition of gray, diffuse radia-
tion and reflection is met in many circumstances
of practical importance. Many studies have
indicated that even highly non-gray, specular
surfaces are often essentially gray and diffuse
under the conditions of actual use as a result of
surface coatings, corrosion, erosion, or other
types of surface alteration.

GENERAL RELATIONS

Any surface A4; in an “enclosure”* of n gray
surfaces loses radiant energy at the net rate of g,

q; = Wid; — ByWid, — ByWed, — . ..

3
= W;d; — I B;W:4; H
w1
where B,;, the absorption factor, is the fraction
of the radiant energy arising at surface 4, which
is absorbed at surface A4;. WA denotes the rate
at which energy is radiated from a surface to the
space above it (other than by reflection). For an
opaque surface, WA becomes merely the
hemispherical emissive power ecT%4 where « is
the total hemispherical emissivity.

(an — DBy + aypBy; + ...

ay By; + (agy — DBy + .
a‘nlBIJ' + anng,' 4+ ...
Qpi == Lpi Py

For diffuse radiation and reflection, the
absorption factors are given by:
+  apBy + Fuye =0 ]
+ agnBy; + Fyye; ==
- ()
+ (apn — DBy + Fye = 0

surface in radiant balance, sometimes called an
“adiabatic” surface, is treated in detail. This
condition often appears in equipment such as:
gas turbine and jet engine combustors, furnaces,
¢lectronic components, electronic equipment,
and satellite and spacecraft components. It is
proven that the temperature of a surface in
radiant balance is independent of its surface

where F,; is the fraction of the emission of
surface A4, directly incident upon A, «; is the
total hemispherical emissivity of surface 4;, and
p; is the reflectivity of surface A4,. In general,

* The term “enclosure” is meant to denote the assembly
of all radiant conditions relevant to the surface under
consideration. Under this definition of an enclosure, all
radiation circumstances are “enclosure” problems.
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opaque surfaces in radiant balance, other than
A;, are assigned a reflectivity of 1-0.%

The absorption factor relations may be
written more compactly as:

&)

where 8,; is Kronecker’s delta. The reciprocity
relations among the »® values of B;; for any
combination of opaque and non-opaque sur-
faces are:

C))

* Since the temperature of such a surface may not be
arbitrarily specified, the total hemispherical emissive
power is not known. This assumption, of unit reflectivity,
satisfies the condition of radiant balance and removes the
unknown from the equation, e.g. equation (1).

n
2 (ap; — 83)By; + Foye; =0
=1

k

GiBiin — Eij,jAj.

(au — D Q19 < @, (a1
Qg (age — 1) ... ag, (g-1
Dui =
Cpy
(ay— D a2 + A, (o-1)
Ggy (“22 — 1) ... e -
D o=
Qpy
Combining (5) and (6), we obtain
= D,T?
Tr— oy i=1,2,.
“ (D - Daa)

TEMPERATURE OF AN OPAQUE SURFACE IN
RADIANT BALANCE
Taking A4; as an opaque surface in radiant
balance, denoted hereafter as A4,, the value of
4. is zero. By equations (1) and (4), we have

Go = W(IA{! - % Bia.WiAi
i=1
— AyeoTi — 5 B, TH = 0. )
-1
The B,, are given by (2) or (3) as
Dai
Bui = D (6)

where D,; and D denote the following two
determinants:

- Fliei @y, (a+1) Qyn
— Fyei @y, (1) Qon
)
(an'n - 1)
A1q Qy, (a+1) Qyn
Goq G, (a1} Gan
®)
(aflm "" 1)
cla—Dy{a+1),...,n 9

It is seen from equation (7) that e,, which is equal to (I — p,), does not appear in the D,; for
i % a. Therefore, the numerator of equation (9) does not depend upon ¢,. D and D,, are written
as follows, moving the ath column into the first column position in both determinants.
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Fiape (C‘u - 1) Qo s Gy
Faupa Ugy (0p — 1) .. Oop
D = (—1y-
(Flmpcz -1 Gy Gy e Gy
Ff‘mPa Qny Qo s (amz. — 1)
~F1(l~€(b ((’“11 - }) Uy e Lyn
~Faq€q Goy (agy—1) ... Uy
Dy = (—131
~Fratq Ay Uy s (‘ann ~ 1)

Both determinants are the same except for the first column. Call N, the value of the minor of
the term in the first column in the kth row. Note that none of the N, contain ¢, or p,. The kth
term of (D — D,,) where k s£ a is written as

(_1);‘».;.1 (wl‘)(},‘l (FA:uP«eNk + FkuEaN:’st) - (._])z.- 41 ('..Nl}a...lNka (10)
None of these terms contain ¢, For the term k = q,
(‘U‘Hl (“'Dabl [(chpw o I)Nrt + Faa 5(1Na} = (_l)a 1 (’“ 1)6"1 Na(Fm - l) (I l)

Again ¢, is absent. Therefore, (D — D,,) is independent of e, Since neither the numerator
nor the denominator depend upon ¢, (or p,), T, is independent of the surface properties of 4,
and depends only upon the temperature and emissivities or surface conditions of the other

surfaces of the radiant surroundings.
The results in (10) and (11) indicate that the denominator of equation (9) may be written in

the following simpler form for calculations;

Flu (au - l) Q2 <. Upn
Fy a1 (age — 1) ... Uan
Dy, =D — Dy = (_\l)a—i ’ . (12)
(th - 1) Qa1 ) .. Agn
Fra Oy Q. ce (“n'nr’_ D
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The foregoing analysis shows that the tem-
perature of an opaque surface in radiant balance
is independent of its surface property emissivity,
i.e. the temperature may be calculated from
equation (9) using any value of e, in equations
(7) and (8). However, it is not necessary to
assume a value of ¢, since equations (12) and (9)
may be used. This same result may be expressed
as follows:

s DT
(1) [(— 1 (Fag — DNy +
S (— 1)t FoN,]
k

T =

i #aand k # a.

13)

OPAQUE SURFACES WITH ASSIGNED NET
RADIANT LOSS

A surface (in a radiant surrounding of arbi-
trary complexity) whose temperature level
adjusts to result in a given net rate of energy
loss by radiation amounts to the assignment of a
given value of ¢g,. The necessary temperature
level is found from equation (5) as

é l)aiT;fl q D
4 _ _ - a .
Tﬂ Da Aafaa'Da’ (14)

Although the first term on the right is inde-
pendent of ¢,, the second is not and the resulting
temperature depends upon ¢,. Equation (14) is
suitable for calculations.

i # a.

NON-OPAQUE SURFACES

The general formulations, equations (1), (2)
and (3), apply for enclosures which contain
windows, openings, or any other surfaces whose
radiation characteristics are gray and diffuse.
For any surface 4;the equations takeintoaccount
the effects of the radiant energy transmission
across all non-opaque surfaces under the assump-
tion that none of the thermal radiation transmitted
outside of the enclosure is again incident upon
the outside of the transmitting areas due, for
example, to reflections. This is a reasonable
assumption in many practical circumstances.

If 4;1is opaque, then g; is the net rate of radiant

energy loss from A;. If A; is non-opaque, g; is
the net rate of radiant energy loss from the
“enclosure” side of A;. The rate of energy
transmission through 4; is

” n

(g97); :azj g BWiA; = 7,04, g B; T} (15)
5
=1

i=1

where 7, and a; are, respectively, the trans-
missivity and absorptivity of A;.

The calculation of the temperature of a non-
opaque surface with an assigned net (or zero)
radiant energy loss rate takes into account both
sides of the surface and the two different
enclosures 4 and B with which the two sides
exchange energy. The n surfaces in enclosure 4
are numbered 1, 2, ..., i, ..., nand the N sur-
faces in B are numbered 1,2, ..., m, ..., N.
The surface under consideration is denoted by a
and its net rate of radiant energy loss is

4. = (qa)A + (‘liz)B = (WaAa — X BiaWiAi)A

i=1

N
+ (WaAa -z BmanAm)B- (16)
m=1
If the two sides of surface a are of equal area and
emissive power, this result may be written as
n N
9o = 2WaAa -z BszAz — Z BuaWnd . (17)
=1 m=1

Employing the reciprocity relation and solving
for T%, we have

[2 - (Baa)A - (Baa)B] Té

” N
= 9a +ZBaiT: + z BamT:n (18)
€,04,

where i % a and m +# a.

For the case of a non-opaque surface in
radiant balance, ¢, is zero. However, it is not
true that T, is independent of ¢, for a non-
opaque surface.

CONCLUSION
The foregoing analysis has shown that the
temperature achieved by an opaque surface in
radiant balance is independent of its surface
properties. Relations are derived for temperature
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calculations for opaque and non-opaque sur-
faces subject to an assigned net thermal radiant
exchange rate.

Although the absorption factor method may
be used in analysing enclosures containing
emitting and absorbing media, the present
treatment applies only in the absence of such
radiation effects. However, if the principal effect
of such an intervening medium is convection at
the various enclosure surfaces, its presence may
be simply accounted for by an iterative method
of calculating the temperature of an assigned
net flux surface. A temperature is assumed, the
rate of convection loss is calculated and sub-
tracted from the assigned rate of loss to obtain
the net rate of radiant loss. From this, a surface
temperature is computed which is compared with
the assumed value.

This absorption factor method applies, within
the limits of the initial assumptions, to enclosures
of arbitrary complexity, i.e. for arbitrarily large
values of n. It has been pointed out [3] that the
inaccuracies inherent in the assumption of
uniform irradiation of each surface by each
other surface may be reduced continually toward
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zero by further subdivision of the surfaces of the
enclosure.*

If a given area in radiant balance in an en-
closure is subject to highly non-uniform irradia-
tion, its temperature will be far from uniform.
More accurate estimates of the temperature
achieved by such a surface may be obtained by
subdividing it into separate zones for which
individual temperatures are calculated. By this
means a temperature distribution is obtained.
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